Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
Sensors (Basel) ; 22(5)2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1732178

ABSTRACT

Remote monitoring platforms based on advanced health sensors have the potential to become important tools during the COVID-19 pandemic, supporting the reduction in risks for affected populations such as the elderly. Current commercially available wearable devices still have limitations to deal with heart rate variability (HRV), an important health indicator of human aging. This study analyzes the role of a remote monitoring system designed to support health services to older people during the complete course of the COVID-19 pandemic in Brazil, since its beginning in Brazil in March 2020 until November 2021, based on HRV. Using different levels of analysis and data, we validated HRV parameters by comparing them with reference sensors and tools in HRV measurements. We compared the results obtained for the cardiac modulation data in time domain using samples of 10 elderly people's HRV data from Fitbit Inspire HR with the results provided by Kubios for the same population using a cardiac belt, with the data divided into train and test, where 75% of the data were used for training the models, with the remaining 25% as a test set for evaluating the final performance of the models. The results show that there is very little difference between the results obtained by the remote monitoring system compared with Kubios, indicating that the data obtained from these devices might provide accurate results in evaluating HRV in comparison with gold standard devices. We conclude that the application of the methods and techniques used and reported in this study are useful for the creation and validation of HRV indicators in time series obtained by means of wearable devices based on photoplethysmography sensors; therefore, they can be incorporated into remote monitoring processes as seen during the pandemic.


Subject(s)
COVID-19 , Wearable Electronic Devices , Aged , Aged, 80 and over , COVID-19/diagnosis , Heart Rate/physiology , Humans , Pandemics , SARS-CoV-2
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-676469.v1

ABSTRACT

Rapid development of coronavirus disease 2019 (COVID-19) vaccines and expedited authorization for use and approval has been proven beneficial to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread and given hope in this desperate situation. It is believed that sufficient supplies and equitable allocations of vaccines are necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here we provide evidence that the NDV vector expressing an optimized spike antigen (NDV-HXP-S), upgraded from our previous construct, is a versatile vaccine that can be used live or inactivated to induce strong antibody responses and to also cross-neutralize variants of concern. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters. It is noteworthy that vaccine lots produced by existing egg-based influenza virus vaccine manufacturers in Vietnam, Thailand and Brazil exhibited excellent immunogenicity and efficacy in hamsters, demonstrating that NDV-HXP-S vaccines can be quickly produced at large-scale to meet global demands.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL